BOOSHNAM ASSOCIATES

AN 150 9001:2015 Certified Organization

CLIENT		M/s. RAINBOW DEVELOPERS, CHENNAI.						
PROJEC	CT	PROPOSED CONSTRUCTION OF RESIDENTIAL (STILT+03) AT S.NO :212/2, MADHA NAGAR MADHANANDHAPURAM VILLAGE, SRIPTALUK, KANCHEEPURAM DISTRICT, GREAT CORPORATION, DIVISION :156, ZONE:12.	MAIN ROAD, PERUMBUDUR					
TITLE		GEOTECHNICAL INVESTIGATION REPORT						
REV.	DATE	REPORT NUMBER	REMARK					
0	21.05.2021	BAG/ M/s. RAINBOW DEVELOPERS /M-1794/21-22						
	2. 1							

BOOSHNAM ASSOCIATES
Chennai-74.
Mobile: 9629631255

Email: booshnamassociates@gmail.com GSTIN: 33BULPN7918Q1ZQ For BOOSHNAM ASSOCIATES

E.A. MVEDHITHA M. Tech

Geotechnical Engineer

No. 169/66, Pammal Main Road, Krishna Nagar, Chennai - 600075. 🗓 9629631255, 9600184996, 9840734856

		CONTENTS	
CHAPTER	SEC. NO.		PAGE NO.
1		INTRODUCTION	
-	1.0	Preamble	1
	1.1	Scope of Work	1
	1.2	Structure of the Report	1
2		INVESTIGATION METHODOLOGY & TEST RESULTS	
2	2.0	Field Testing	2
	2.1	Preamble	2
	2.2	Equipment Used and Method of Drilling	2
	2.2.1	Equipment Used	2
	2.2.2	Method of Drilling	2
	2.3	In-situ Strength Tests	2
	2.3.1	Standard Penetration Tests	2
	2.4	Collection of Samples	2
	2.4.1	Disturbed Soil Samples	2
	2.4.2	Ground Water	2
	2.5	Summary of Field Work	3
	2.6	Laboratory Testing	3
	2.6.1	Coarse Grained Soil Samples	3
	2.6.1.1	Grain Size Analysis Tests	3
	2.6.2	Fine Grained Soil Samples	3
	2.6.2.1	Index Property & Free Swell Tests	3
	2.6.3	Chemical Analysis Tests	3
	2.6.3.1	Water Samples	3
FIGURES	2.0	Site Plan representing the locations of Field investigation points	4
	2.1	Soil Profile at BH-01 Location	5
	2.2	Soil Profile at BH-02 Location	6
	2.3	Soil Profile at BH-03 Location	7
	2.4	Soil Profile at BH-04 Location	8
TABLES	2.1	Laboratory Test Results on the Soil Samples collected from BH-01 Location	9
	2.2	Laboratory Test Results on the Soil Samples collected from BH-02 Location	10
	2.3	Laboratory Test Results on the Soil Samples collected from BH-03 Location	11
	2.4	Laboratory Test Results on the Soil Samples collected from BH-04 Location	12
	2.5	Chemical Analysis Test Results on the Water Samples collected from borehole Locations	13

			91
3		SUB-SURFACE STRATIFICATION	
	3.0	Preamble	14
}	3.1	Sub surface Stratification	14
	3.1.1	Soil Profile at BH-01 Location	14
l	3.1.2	Soil Profile at BH-02 Location	15
	3.1.3	Soil Profile at BH-03 Location	16
	3.1.4	Soil Profile at BH-04 Location	16
4		FOUNDATION SYSTEM	
	4.0	Preamble	17
	4.1	Bearing Strata Characteristics	17
	4.2	Foundation System	18
	4.2.1	Open Foundation System	18
5		RECOMMENDATIONS	19
ANNEXURE		Design of Open Foundation System (Ref. BH-01)	20-21

2

INTRODUCTION

1.0 Preamble

M/s. Rainbow Developers, Chennai proposed to construct a Residential Building (Stilt+03) at S. No:212/2, Madha Nagar Main Road, Madhanandhapuram Village, Sriperumbudur Taluk, Kancheepuram District, Greater Chennai Corporation, Division:156, Zone:12.

For the purpose of designing the foundations, the responsibility of carrying out suitable soil investigations was entrusted to M/s. Booshnam Associates, Chennai.

This report contains the field and laboratory test results along with Design computations and recommendations for suitable foundation systems.

1.1 Scope of Work

- Sinking Four Standard Soil investigation bore holes of 150mm diameter up to a depth of 10.50m below existing ground level as directed by the engineer-incharge.
- Conducting Standard Penetration Test (SPT) at regular depth intervals.
- Collection of Split Spoon Samples or Disturbed Soil Samples
- Collection of water samples from each bore hole.
- Conducting relevant laboratory test results.

1.2 Structure of the Report

- Contents
- Introduction
- Investigation Methodology & Test Results
- Figures & Tables
- Sub-Surface Stratification
- Foundation Systems
- Recommendations
- Annexure (Design Computations)

INVESTIGATION METHODOLOGY & TEST RESULTS

2.0 Field Testing:

2.1 Preamble:

Four standard soil investigation boreholes were put. The equipment used and the methodology adopted to carry out the fieldwork is described below.

2.2 Equipment Used and Method of Drilling:

2.2.1 Equipment Used

The equipment used for performing the drilling operations is a Manual Rotary Drill Rig with direct mud circulation technique. The drill mud used was made out of Sodium Bentonite.

2.2.2 Methodology of drilling

In the soil strata, the drilling operations have been carried out using special drill bits with direct mud circulation.

2.3 In-Situ Strength Tests:

2.3.1 Standard Penetration Test:

Standard penetration tests were conducted at the borehole location, in accordance with IS: 2131. The tests were conducted at every change of strata up to the depth of termination of the borehole as directed by the engineer-incharge.

2.4. Collection of Samples:

2.4.1 Disturbed Soil Samples

The SPT-samples collected were used as disturbed soil samples. These samples were used for visual and physical identification and for conducting laboratory classification tests as per I.S.1498-1970.

2.4.2 Ground Water

For conducting suitable chemical tests, the ground water sample was collected from the respective boreholes.

2.5 Summary of Field Work

The locations of the boreholes are shown in site plan given in Fig.2.0. The soil profiles obtained at each location is shown in Figs.2.1 to 2.4.

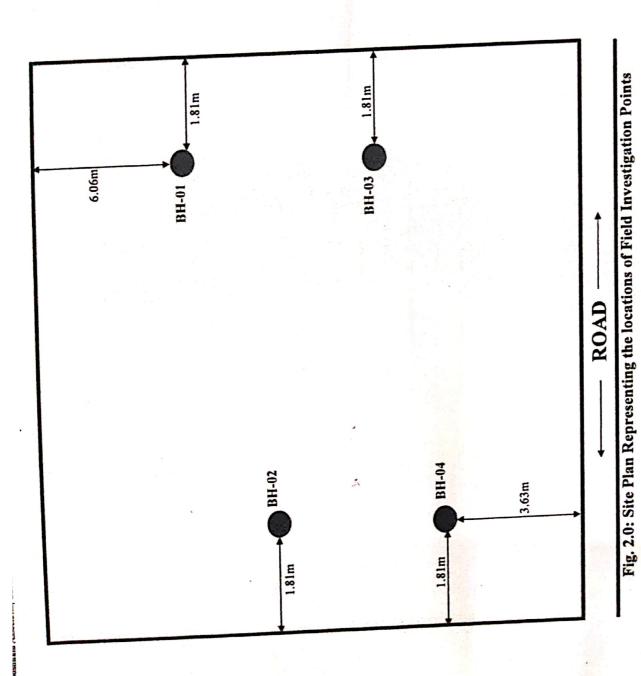
2.6 Laboratory Testing:

2.6.1 Coarse Grained Samples:

2.6.1.1 Grain size Analysis Tests:

On the coarse grained samples, grain size distribution tests were conducted as per 1.S.2720 (Part 4)-1985, to know the gradation characteristics and to classify them. These results are presented in Tables 2.1 to 2.4.

2.6.2 Fine Grained Samples:


2.6.2.1 Index Property - Free Swell Tests:

Atterberg Limits were carried out on fine grained soil samples to evaluate the limits of different consistency states. Generally Liquid limits, Plastic limits and Shrinkage Limits tests were conducted as per I.S.2720 (Part-5)-1985 and I.S.2720 (Part 6)-1972. On such type of soil strata encountered at the investigation locations, such tests were conducted and the test results are presented in Tables 2.1 to 2.4.

2.6.3 Chemical Analysis Tests:

2.6.3.1 Water Samples:

On representative water samples, chemical analysis tests were conducted to estimate pH, Chlorides and Sulphates. These results are presented in Table-2.5.

Project: Proposed Construction of Residential Building (Stilt+03) at S. No:212/2, Madha Nagar Main Road, Madhanandhapuram Village, Sriperumbudur Taluk, Kancheepuram District, Greater Chennai Corporation, Division :156, Zone:12.

Location			P. 1.10 10/05/2	021 G.	w T·	3.00	m be	elow existing ground level			
Started	On	: 18/05/	2021; Ended On: 18/05/2	SPT	- Det	ails		Graphical Representation	n of SP1	ic,	
				1 1 1 1 1				0 10 20 30 40 50 60	70 80 90	ster	<u>e</u>
R.L of Layer (m)	G.W.T. (m)	Soil Profile	Engineering Description of Soil	Depth of SPT below E.G.L (m)	0-15 cm	15-30 cm	30-45 cm	N-Value		Relative Density/Consistency	Type of Sample
2.00			Brownish Very Suff Silty Clay	1.50	5	7	14	21 0		V Stiff	SS
G.W.T	¥		Blackish Hard Silty Clay	3 00	10	14	17	31	4	Hard	SS
4.00	-		Blackish	4.50	7	10	16	26		V.Stiff	SS
			Very Stiff Silty Clay	6,00	9	12	15	27		V.Suff	55
6.50	-		Greyish Very Dense Silty Fine Sand	7.50	15	23	34	57		V.Dense	SS
8.00	-	-	Greyish Medium Dense	9.00	6	9	13	22		M.Dense	ss
10.50	-	-	Silty Fine Sand	10.50	5	8	12	20 and a second l		M.Dense	SS

Bore Hole Terminated at a depth of 10.50m below the existing ground level Fig. 2.1 Soil Profile at BH-01 Location

Project: Proposed Construction of Residential Building (Stilt+03) at S. No:212/2, Madha Nagar Main Road, Madhanandhapuram Village, Sriperumbudur Taluk, Kancheepuram District, Greater Chennai Corporation, Division:156. Zone:12.

Location: BH-02

Locatio	n: B	H-02							tutd laval		
Started	On	: 18/05/	2021; Ended On: 18/05/				0m	below ex	xisting ground level ical Representation of SPT	>,	
	П	1		SPT -	Det	ails		Graph	0 20 30 40 50 60 70 80 90	enc	
R.L of Layer (m)	G.W.T. (m)	Soil Profile	Engineering Description of Soil	Depth of SPT below E.G.L (m)	0-15 cm	15-30 cm	30-45 cm	N-Value 0	0 2030 40 30 00 70 00 50	Relative Density/Consistency	Type of Sample
2.00			Brownish Medium Dense Silty Fine Sand	1.50	9	13	15	28		· M.Dense	SS
G.W.T	1		Brownish Very Dense	3.00	15	22	35	57	P	V.Dense	SS
5.00	-		Silty Fine Sand	4.50	17	25	37	62		V.Dense	SŠ
7.00			Blackish Very Stiff • Silty Clay	6 00	7	11	13	24		V.Stiff	SS
7.00	1		Greyish Very Dense	7.50	13	21	31	52	\rightarrow	V.Dense	SS
8.00	-		Silty Fine Sand Greyish Medium Dense	9.00	7	10	13	23		M Dense	SS
10:	1		Silty Fine Sand	10.50	4	7	13		existing ground level	M Dense	SS

Bore Hole Terminated at a depth of 10.50m below the existing ground level
Fig. 2.2 Soil Profile at BH-02 Location

Project: Proposed Construction of Residential Building (Stilt+03) at S. No:212/2, Madha Nagar Main Road, Madhanandhapuram Village, Sriperumbudur Taluk, Kancheepuram District, Greater Chennai Corporation, Division :156, Zone:12.

Location: BH-03

Started			/2021; Ended On: 19/05	/2021 C	.w.	Γ: 2.0)0m	elow existing	g ground level		
				SPT	- De	tails		Graphical R	epresentation of SPT	ney	
								0 10 20	30 40 50 60 70 80 90	iste	ple
R.L of Layer (m)	G.W.T. (m)	Soil Profile	Engineering Description of Soil	Depth of SPT below E.G.L (m)	0-15 cm	15-30 cm	30-45 cm	N-Value		Relative Density/Consistency	Type of Sample
~	Ö	S	1	000	9	_	3	4			
2.00	L		Brownish Dense Silty Fine Sand	1.50	8	17	21	38		Dense	ss
			Brownish Very Dense	3.00	14	26	33	59		V.Dense	SS
			Silty Fine Sand	4.50	18	28	36	64		V.Dense	SS

Bore Hole Terminated at a depth of 4.50m below the existing ground level

Fig. 2.3 Soil Profile at BH-03 Location

Project: Proposed Construction of Residential Building (Stilt+03) at S. No:212/2, Madha Nagar Main Road,

Madhanandhapuram Village, Sriperumbudur Taluk, Kancheepuram District, Greater Chennai Corporation, Division :156,

Zone:12.

Location: BH-04

Started On: 19/05/2021: Ended On: 19/05/2021 G.W.T: 2.00m below existing ground level

Star	icu C	///	: 19/05	/2021; Ended On: 19/05/	2021 U	. W.	. 4.	JUIII	Delo	w existing ground level		
					SPT	- De	tails		Gr	aphical Representation of SPT	3	
1 2									0	10 20 30 40 50 60 70 80 90	ten	
R.L. of Layer (m)	(m) 1/M 5	G.W.1. (m)	Soil Profile	Engineering Description of Soil	Depth of SPT below E.G.L (m)	0-15 cm	15-30 cm	30-45 cm	N-Value		Relative Density/Consistency	Type of Sample
2.0	0			Brownish Dense Silty Fine Sand	1.50	9	15	22	37		Dense	SS
				Brownish Very Dense Silty Fine Sand	3.00	16	24	32	56		V Dense	ss
4.5	0				4.50	17	31	37	68		V.Dense	SS

Bore Hole Terminated at a depth of 4.50m below the existing ground level

Fig. 2.4 Soil Profile at BH-04 Location

						-	
		noitesNiszelD-Sl	ם	ם	ם	SM	SM
		Clay (%)	81	08	82	0	0
_	sis	(%) His	61	20	8	16	21
1-0	naly	(%) eni4	0	0	0	. 25	79
1B1	Sieve Analysis	(%) muibəl/	0	0	0	0	0
ron	Sie	Coarse (%)	0	0	0	0	0
ed f		Cravel (%)	0	0	0	0	0
Collect		Relative Density/ Consistency	V.Stiff	Hard	V.Stiff	V.Dense	M.Dense
ıple		FS	09			•	
San		31	1.0	1.3	1.0	1.0 •, ∗	
oil	Clay	Id	42	23	39	•	
ıe S	•	PL (%)	24	29	21		1
n tl	100	rr (%)	99	28	9	1	•
ılt		(33/g) Tiens of larute N.	1.9	2.0	1.9	2.0	1.7
Resi		NMC(%)	22	61	20	•	•
2.1: Laboratory Test Result on the Soil Sample Collected from BH-01	42 17	Engineering Description of Soil	Silty Clay	Silty Clay	Silty Clay	Silty Fine Sand	Silty Fine Sand
a l		Type of Sample	SS	SS	SS	SS	SS
Table		oldms2 to Tq2	21	31	26	57	22
[(m)	Depth of Sample below E.G.L.	0.00 to 2.00	2.00 to 4.00	4.00 to 6.50	6.50 to 8.00	8.00 to 10.50
				ate, an			

				the bearing			
		1S-Classification	SM	SM	Ü	SM	SM
		Clay (%)	0	0	8	0	0
-	'sis	(%) માંડ	21	12	20	16	22
1-07	naly	(%) əni ⁴	79	85	0	22	78
BE	Sieve Analysis	(%) muibəld	0	0	0	0	0
rom	Sie	Coarse (%)	0	0	0	0	0
d fi		(%) byra D	0	•	0	0	0
e Collecte		Relative Density/ Consistency	M.Dense	V.Dense	V.Stiff	V.Dense	M.Dense
npl		ES		,			
Sar		3]			1.2	•	
Soil	Clay	ld			34		•
he S	Ŭ	PL (%)		•	26	4.	
on t		rr (%)	•	•	09	•	4.
sult		Natural Density (g/cc)	1.8	2.0	1.9	2.0	1.7
Res		NWC(%)	1	•	20	•	•
Table 2.2: Laboratory Test Result on the Soil Sample Collected from BH-02		Engineering Description of Soil	Silty Fine Sand	Silty Fine Sand	Silty Clay	Silty Fine Sand	Silty Fine Sand
e 2.		Type of Sample	SS	SS	SS	SS	SS
Tabl		Jo Tyle	28	59	24	52	23
	(m)	Depth of Sample below E.C.L.	0.00 to 2.00	2.00 to 5.00	5.00 to 7.00	7.00 to 8.00	8.00 to 10.50

	Table	le 2.	2.3: Laboratory Test Result on the Soil Sample Collected from BH-03	Res	ult	n th	e S	oil Sa	dun	le Collecte	u pe	wo.	ВН	-03			
(m)			10. A				၁	Clay				Sie	'e A	Sieve Analysis	sis		
Depth of Sample below E.C.L.	SPT of Sample	Type of Sample	Engineering Description of Soil	NMC(%)	Natural Density (g/cc)	(%)	Jr (%)	14	LS.	Relative Density/ Consistency	Gravel (%)	Coarse (%)	(%) muibəl/	(%) sui3	(%) tiis	Clay (%)	IS-Classification
0.00 to 2.00	38	SS	Silty Fine Sand		1.9	•	. 1	•		Dense	0	0	0	08	20	0	SM
2.00 to 4.50	59	ŞŞ	Silty Fine Sand	•	2.0	•	•	•		V.Dense	0	0	0	28	16	0	SM

2.4: Laboratory Test Result on the Soil Sample Collected from BH-04	Sieve Analysis	Relative Density/ Consistency Gravel (%) Medium (%) Fine (%) Clay (%) 15-Classification	Dense 0 0 0 81 19 0 SM	V.Dense 0 0 0 86 14 0 SM			
ple Collected from BH-04	Sieve Analysis	Gravel (%) Coarse (%) Medium (%) Fine (%)	61 18 0 0 0	0 0 0 86 14			
ple Collected from BH-04	Sieve Analysis	Gravel (%) Coarse (%) Medium (%)	0 0 0 81	98 0 0 0			
ple Collected from BH-0	Sieve Analy	Gravel (%) Coarse (%) Medium (%)	0 0 0	0 0 0			
ple Collected from BF	Sieve A	Gravel (%) Coarse (%)	0 0	0 0			
ple Collected from	Sie	(%) Cravel	0	0			
ple Collected f							
ple Collecto		Relative Density/ Consistency	Dense	ense			
				V.D			
a		FS		1.0			
Sar		3					
Soil	Clay Clay						
he		PL(%)) / •	•			
uo		(%)	•	•			
sult		Natural Density (g/cc)	1.9	2.0			
Re		NMC(%)	,	•			
4: Laboratory Test		Engineering Description of Soil	Silty Fine Sand	Silty Fine Sand			
le 2.		Type of Sample	SS	ŞŞ			
Table		SPT of Sample	37	56			
	(w) ~	Depth of Sample below E.G.L	0.00 to 2.00	2.00 to 4.50			

Table 2.5: Chemical Analysis Results conducted on Water Samples collected from BH-01 to BH-04

Location	Depth of Sample below E.G.L. (m)	pН	Chlorides (ppm)	Sulphates (ppm)
BH-01	3.00	7.70	319.11	358.99
BH-02	3.00	7.71	315.09	354.47
ВН-03	2.00	7.72	322.35	362.64
ВН-04	2.00	7.70	328.24	369.27

SUB-SURFACE STRATIFICATION

3.0 Preamble

The sub surface stratification at borehole location, with respect to foundation/geotechnical engineering application are derived based on the visual identification, laboratory classification tests and field in-situ strength tests. Further, the strength parameters are estimated based on the in-situ strength test results as per the following correlation.

- * For Coarse Grained Samples, Ref. Fig.1, IS: 6403 to estimate Angle of Shearing Resistance.
- * For Fine Grained Samples, Ref. Terzaghi & Peck, 1948, to estimate Unconfined Compressive Strength.

3.1 Sub Surface Stratification:

3.1.1 Soil Profile at BH-01 Location

(At BH-01 Location, as presented in Site plan)
Laver-1 (from F.G.L to 2.00m depth)

Laver-1 (If off E.G.E to 2.00m depth)	
Type of Strata	Silty Clay
Colour	Brownish
Thickness of Layer	2.00m
SPT of the layer	21
Consistency	Very Stiff
•	140.00kPa
Un-drained Cohesion, Cu	1 10.0011 4

Layer-2 (from 2.00m to 4.00m depth)

Type of Strata
Colour
Thickness of Layer
SPT of the layer
Consistency
Un-drained Cohesion, Cu
Silty Clay
Blackish
2.00m
31
Hard
206.66kPa

* Layer-3 (from 4.00m to 6.50m depth)

Type of Strata

Colour

Silty Clay

Blackish

Thickness of Layer

SPT of the layer

Consistency

Un-drained Cohesion, Cu

Silty Clay

Blackish

2.50m

Yery Stiff

173.33kPa

* Layer-4 (from 6.50m to 8.00m depth)

Type of Strata
Colour
Thickness of Layer

Silty Fine Sand
Greyish
1.50m

SPT of the layer

Relative Density

Angle of Shearing Resistance, \$\phi\$

42.050

* Layer-5 (from 8.00m to 10.50m depth)

Type of Strata

Colour

Thickness of Layer

SPT of the layer

Relative Density

Silty Fine Sand

Greyish

2.50m

22

Medium Dense

Angle of Shearing Resistance, φ 33.60°

Ground Water

Ground water table was encountered at a depth of 3.00m below the existing ground level during the fourth week of May 2021.

3.1.2 Soil Profile at BH-02 Location (At BH-02 Location, as presented in Site plan)

Layer-1 (from E.G.L to 2.00m depth)

Type of Strata

Colour

Silty Fine Sand
Brownish
2 00m

Thickness of Layer

SPT of the layer

Relative Density

Analo of Shearing Resistance A

35.40°

Angle of Shearing Resistance, \$\phi\$
Layer-2 (from 2.00m to 5.00m depth)

Type of Strata
Colour
Thickness of Layer
SPT of the layer
Relative Density
Silty Fine Sand
Brownish
3.00m
59
Very Dense

Angle of Shearing Resistance, ϕ 42.35°

Layer-3 (from 5.00m to 7.00m depth)

Type of Strata

Colour

Thickness of Layer

SPT of the layer

SPT of the layer

SPT of the layer

Consistency
Un-drained Cohesion, Cu
Very Stiff
160.00kPa

Layer-4 (from 7.00m to 8.00m depth)

Type of Strata

Colour

Thickness of Layer

SPT of the layer

Relative Density

Silty Fine Sand

Greyish

1.00m

52

Very Dense

Angle of Shearing Resistance, ϕ 41.30°

Layer-5 (from 8.00m to 10.50m depth)

Type of Strata
Colour

Silty Fine Sand
Greyish

Colour Greyish
Thickness of Layer 2.50m

SPT of the layer

Relative Density Angle of Shearing Resistance, 6 23

Medium Dense

 33.90^{0}

Ground Water

Ground water table was encountered at a depth of 3.00m below the existing ground level during the fourth week of May 2021.

3.1.3 Soil Profile at BH-03 Location

(At BH-03 Location, as presented in Site plan)

Layer-1 (from E.G.L to 2.00m depth)

Silty Fine Sand Type of Strata Brownish Colour 2.00m Thickness of Layer 38 SPT of the layer Dense Relative Density 38.20° Angle of Shearing Resistance, o

Layer-2 (from 2.00m to 4.50m depth)

Silty Fine Sand Type of Strata **Brownish** Colour 2.50m Thickness of Layer 59 SPT of the layer Very Dense Relative Density 42.35° Angle of Shearing Resistance, ¢

Ground Water

Ground water table was encountered at a depth of 2.00m below the existing ground level during the fourth week of May 2021.

3.1.4 Soil Profile at BH-04 Location

(At BH-04 Location, as presented in Site plan)

Layer-1 (from E.G.L to 2.00m depth)

Silty Fine Sand Type of Strata **Brownish** Colour 2.00m Thickness of Layer 37 SPT of the layer Dense Relative Density 37.925° Angle of Shearing Resistance, ¢

Layer-2 (from 2.00m to 4.50m depth)

Silty Fine Sand Type of Strata **Brownish** Colour 2.50m Thickness of Layer 56 SPT of the layer Very Dense Relative Density 41.900 Angle of Shearing Resistance, ¢

Ground Water

Ground water table was encountered at a depth of 2.00m below the existing ground level during the fourth week of May 2021.

FOUNDATION SYSTEM

4.0 Preamble

The foundation system design is an interface between super structure and the sub soil bearing strata characteristics. A sound foundation system should be safe against bearing strata shear response under the super structure load intensity. Similarly, the stability of the foundation system is governed by the bearing strata deformation response under the super structure load intensity. In addition, as a combined system of super structure and foundation, the overall stability is also governed by the super structure arrangement.

Considering the above aspects of foundation design, the suitable type of foundation system with respect to the sub soil conditions encountered at the borehole locations is presented in the subsequent sections.

4.1 Bearing Strata Characteristics

From field investigations, it can be observed that the sub-soil strata encountered at shallow depths are uniformly stratified from type but possess non-uniform shear strength characteristics, BH-01 being relatively weak from deformation considerations and hence shall be considered as design borehole to determine the bearing strata and its safe bearing capacity.

Considering BH-01 as design borehole, it can be further envisaged that the highly plastic fine-grained soil strata encountered at shallow depths will hold good to act as bearing strata from shear strength characteristics and deformation considerations for nominal column loads in the range of 650kN to 750kN respectively.

If fine-grained strata encountered at shallow depths are considered as bearing strata, the safe bearing capacity of open foundation system will be a function of un-drained cohesive strength of the bearing strata.

Care shall be taken in locating the foundation system on such type of highly plastic fine-grained strata so that ordinate pressures resulting from its volumetric change phenomenon during variations in seasonal moisture content variations do not impact the structural system of foundation.

Further, care shall also be taken so that the dispersed foundation stresses on the underlying relatively weak soil strata encountered at 5.00m depths below

FOUNDATION SYSTEM

4.0 Preamble

The foundation system design is an interface between super structure and the sub soil bearing strata characteristics. A sound foundation system should be safe against bearing strata shear response under the super structure load intensity. Similarly, the stability of the foundation system is governed by the bearing strata deformation response under the super structure load intensity. In addition, as a combined system of super structure and foundation, the overall stability is also governed by the super structure arrangement.

Considering the above aspects of foundation design, the suitable type of foundation system with respect to the sub soil conditions encountered at the borehole locations is presented in the subsequent sections.

4.1 Bearing Strata Characteristics

From field investigations, it can be observed that the sub-soil strata encountered at shallow depths are uniformly stratified from type but possess non-uniform shear strength characteristics, BH-01 being relatively weak from deformation considerations and hence shall be considered as design borehole to determine the bearing strata and its safe bearing capacity.

Considering BH-01 as design borehole, it can be further envisaged that the highly plastic fine-grained soil strata encountered at shallow depths will hold good to act as bearing strata from shear strength characteristics and deformation considerations for nominal column loads in the range of 650kN to 750kN respectively.

If fine-grained strata encountered at shallow depths are considered as bearing strata, the safe bearing capacity of open foundation system will be a function of un-drained cohesive strength of the bearing strata.

Care shall be taken in locating the foundation system on such type of highly plastic fine-grained strata so that ordinate pressures resulting from its volumetric change phenomenon during variations in seasonal moisture content variations do not impact the structural system of foundation.

Further, care shall also be taken so that the dispersed foundation stresses on the underlying relatively weak soil strata encountered at 5.00m depths below existing ground level (SPT @ 6.00m is 24, Ref. BH-02) are within its safe bearing capacity limits.

Considering the above, suitable foundation system is presented below.

4.2. Foundation System

4.2.1 Open Foundation System (BH-01)

Considering the highly plasticity of fine-grained soil strata encountered at shallow depths, their shear strength characteristics and presence of underlying relatively weak soil strata encountered at 5.00m below existing ground level, open foundation system of <u>Isolated Column Footing/Strip Raft</u> located at a design depth of 1.60m below present existing ground level over 0.30m thick well compacted CNS (cohesive non-swelling) soil can be adopted. The safe bearing capacity of such type of open foundation system is presented below which can be adopted for foundation design purposes.

Type of Open Foundation System	Total Depth of Excavations below existing ground level (m)	Backfill with well compacted CNS (m)	Depth of Isolated Column Footing below Existing Ground Level (m)	Safe Bearing Capacity (t/m²)	Elastic Settlements (mm)
Isolated Column Footing	1.90	0.30	1.60	20	40

The computations for above are annexed to this report.

Notes

Safe Bearing Capacity of open foundation system is restricted considering the presence of underlying relatively weak soil strata encountered at 5.00m depths below existing ground level (SPT @ 6.00m is 24, Ref. BH-02) i.e. 3.10m distant apart from the bottom level of footing.

CONCLUSIONS & RECOMMENDATIONS

- Open Foundation system presented in Clause 4.2.1, Chapter-IV can be adopted for foundation design purposes.
- 2. Above presented foundation system specifications shall be strictly adhered to. (IMP)

Open Foundation System.

- In case, ground water table is encountered within recommended depth of foundation system, provision shall be made to continuously bail the water out of the foundation pits to keep the surfaces of pit consolidated dry.
- 4. Safe Bearing Capacity of open foundation system is restricted considering the presence of underlying relatively weak soil strata encountered at 5.00m depths below existing ground level (SPT @ 6.00m is 24, Ref. BH-02) i.e. 3.10m distant apart from the bottom level of footing.

Open Foundation Depths

- 5. Depth of open excavations below present existing ground level shall be 1.90m.
- 6. Recommended Thickness of CNS Back-Fill @ Site is 0.30m.
- Depth of Isolated Column Footing below existing ground level will be 1.60m.
 <u>Usage of Excavated Earth</u>
- 8. Excavated highly plastic fine-grained soil encountered at shallow depths shall be in no case used for back filling purposes.
- No structural units can be in direct contact of highly plastic fine-grained soil strata encountered at shallow depths. A 0.30m thick well compacted CNS is recommended to be sand-witched in between.

Type of CNS to Use

- 10. CNS can be well graded coarse-grained M-Sand or quarry dust or clean river sand or sand: gravels mix (1:2) or fly-ash.
- 11. As the chlorides and sulphates present in water samples are within the permissible limits, no special steel or cement is recommended to be used for foundation construction purposes.

BOOSHNAM ASSOCIATES Chennai-74.

Mobile: 9629631255
Email: booshnamassociates@gmail.com
GSTIN: 33BULPN7918Q1ZQ

For BOOSHNAM ASSOCIATES

Er.A. NIVEDHITHA M. Tech

Seotechnical Engineer

DESIGN OF OPEN FOUNDATION SYSTEM (Ref. BH-01)

1 COMPUTATION OF BEARING CAPACITY AS PER IS:6403

1.1 Geometrical Data:

Type of Foundation System: Isolated Column Footing R.L of the top of Borehole (m): 0.00 m

Depth of Foundation excavations below existing ground level (D_f): 1.90 m

Recommended Thickness of CNS Back-Fill below Footing: 0.30 m

Effective Depth of Foundation below existing ground level (D_f): 1.60 m

Design Width of Foundation (B): 1.00 m

Thickness of Foundation (T): 0.25

1.2 Soil Data:

Type of Bearing Strata: Silty Clay

Design SPT-value of the Bearing Strata: 21

(considered based upon the density of the strata)

Type of Shear Failure: General

Undrained Cohesion, Cu: 140.00 kPa

1.3 Design Parameters:

Bulk Density of Soil above the foundation detph (γ_{bulk}) 19.00 kN/m³

Effective Overburden pressure at foundation level (q) 14.40 kPa

Water Table Correction Factor (w') 0.50

Bearing Capacity Factors:

 $N_c = 5.14$

 $N_q = N/A$

 $N_{\gamma} = N/A$

Shape Factors:

 $S_c = 1.30$

 $S_q = N/A$

 $S_v = N/A$

Depth Factors:

 $D_{\rm e} = 1.00$

 $D_q = N/A$

$$D_y = N/A$$

Inclination Factor:

 $I_c = 1.00$

 $I_q = N/A$

L = N/A

1.4 Ultimate Bearing Capacity (Qu):

$$Qu = Cu*Nc*Sc*D_{C}*I_{C}+q*(Nq-1)*Sq*Dq*Iq + 0.5*B*\gamma*N\gamma*S\gamma*D\gamma*Ig*w'$$

 $Q_u = 935.48 \text{ kPa}$

1.5 Safe Bearing Capacity (Qsafe):

Factor of Safety (F.S.):

2.50

Qsafe:

374.19 kPa

Recommended Safe Bearing Capacity:

200.00 kPa

Restricted considering the presence of underlying relatively weak soil layer encountered at 5.00m depths from existing ground level i.e. 3.10m distant apart from the bottom level of footing.

1.6 Settlements

Since, the bearing strata are very stiff fine-grained type, the settlements under the allowable safe bearing pressure 200kPa will be of immediate elastic nature. The elastic settlements corresponding to a safe bearing pressure of 200kPa and average SPT of 21 considering extent of pressure bulb below bottom level of footing are computed to be in the order of 40mm which is within the permissible limits of 50mm for isolated column footings as per I.S:1904.