PROJECT *	DAC-BROOKLEY	N APARTMENT,C	OIMB	ATORE	1		
CONSULTANT	THE DESIGN ON						
DESIGN OF SLAB	3M X 4.5M						
DESIGN DATAS:							
The second secon	Length of the slab in	x-direction I	=		3 m	=	3000 mm
	Length of the slab in		=		5 m	_	5000 mm
	Thickness of the sup	porting wall, t	=		230 mm	=	0.23 m
		Live load on the slal	h =		3 kN/m^2		0.23 111
		Floor Finish			1 kN/m^2		
	(Grade of concrete, f			20 N/mm ²		
		Grade of steel, f,			415 N/mm ²		
TYPE OF SLAB:							
,	Hanna the airea al-t	L _y /L _x		1.666	66667 <2		
LOAD CALCULATION	Hence the given slab	is a two-way slab					
		me overall depth, D	522		125 mm	=	0.125 m
		t weight of concrete			25 kN/m ³		0.125 III
		If-weight of the slab			3.125 kN/m ²		
		ive load on the slab			3 kN/m^2		
		Floor Finish			1 kN/m^2		
		Total load, W			1.125 kN/m ²		
		Factored load, W			6875 kN/m^2		
EFFECTIVE SPAN:		и политу по д		10.0	na/J K. O.M.		
		L_{eff}	=	L_x+d			
•		cover to the slab, c'	=		25 mm	=	0.025 m
	Effective 1	Depth of the slab, d			100 mm	=	0.1 m
		L_{eff}			3.1 m		
			(OR)				
		L _{eff} :		L_x+t	=	3.2 n	n
		whichever is sm $Required L_{eff.} =$					
ENDING MOMENT:		Required L eff.	_		3.1 m		
	nding Moment, M		=	(W *I	2)/0		
	namg Woment, W			(W _u *L _{ef}	7)/8 359 kNm		
			=		359 KNIII 359 Nmm		
HECK FOR EFFECTIVE	VE DEPTH:			12030	JJJ IVIIIII		
M_u	lim.	=		0.138*f _c	*b*d ²		
· Con	nsider				of the slab		
•		=			h of the slab		
		Effective depth, d =		68.202	189 mm		
REA OF STEEL DEINE	ODCEMENT	Slab Dept.	h is co	rrect			
REA OF STEEL REINF	ORCEMENT:			0.05+3+			
		$M_u =$		0.87*f _y */	$A_{st}*d*(1-((f_y*A_{st})^2))$	st)/(b*d*	$(f_{ck})))$

```
By Quadratic Equation A =
                                                                               f_v/(b^*d^*f_{ck})
                                                                                                                 0.0002
                                                                    C =
                                                                               M_v/(0.87*f_v*d)
                                                                                                                 355.58
                                                                               (-B+sqrt(B<sup>2</sup>-4AC)/2B
                                                                  Ast 1 =
                                                                                                                 4432.7 mm<sup>2</sup>
                                                                               (-B-sqrt(B^2-4AC)/2B
                                                                                                                 386.6 mm<sup>2</sup>
                                                                  A_{st2} =
                                                                                386.59623 mm<sup>2</sup>
                                                         Required A_{st} =
                                                                            10 mm dia bars
                                                             Assume
                                                                                       78.5 mm<sup>2</sup>
                                                                   a_{st} =
                                                         No. of bars =
                                                                                4.9247927 Nos.
                                                                                          5 Nos.
                                                             Spacing =
                                                                                        200 mm
                                                                      (OR)
                                                                                                          300 mm
                                                                              3d
                                                                      (OR)
                                                                                       300 mm
                                                                      Whichever is smaller
                          Required Spacing
                                                                                       200 mm
                                                            Provide
                                                                          10 mm dia bars @
                                                                         200 mm c/c.
 CRANK DISTANCE:
                          Left/4
                                                                                     0.775 m
                                                                                       775 m
 DISTRIBUTGRY REINFORCEMENT:
                                                                                                                  150 mm<sup>2</sup>
                                                                             0.12%*c/s area
                                                                A_{stD} =
                                                           Assume
                                                                           8 mm dia bars
                                                                                    50.24 mm<sup>2</sup>
                                                                  a_{st} =
                                                        No. of bars =
                                                                               2.9856688 Nos.
                                                                                         3 Nos.
                                                            Spacing =
                                                                              333.33333 mm
                                                                                      334 mm
                                                                     (OR)
                                                                             5d
                                                                                      500 mm
                                                                    (OR)
                                                                                      300 mm
                                                                    Whichever is smaller
                                                 Required Spacing =
                                                                                     300 mm
                                                          Provide
                                                                          8 mm dia bars @
                                                                       300 mm c/c.
CHECK FOR SHEAR STRESS:
                        Nominal shear stress, \tau_v
                                                                            V_u/b*d
                        V<sub>u</sub>
                                                                            (W_u * L_{eff})/2
                                                                              16.565625 kN
                                                                 \tau_v =
                                                                             0.1656563 N/mm<sup>2</sup>
                                                         A<sub>st provided</sub> =
                                                                                  392.5 mm<sup>2</sup>
                       (100*A<sub>st provided</sub>)/(b*d)
                                                                                 0.3925 %
                       Interpolation from I.S. 456-2000
```


τ_c (for $f_{ck}=20 \text{ N/mm}^2$)	(100*A _{st provided})/(b*d)
0.36	0.25
0.4284	0.25 0.393 0.5
0.48	0.5

Permissible Shear stress, τ_c

0.4284 N/mm²

Hence safe agaist shear

CHECK FOR DEFLECTION:

From I.S. 456-2000, pg.no.: 38, fig. 4:

2000, pg.non 20, ng. 4.						
Steel Stress of service, f _s	=	$0.58*f_y*(A_{st required}/A_{st provided})$				
	=	237.07952 N/mm ²				
p_t	=	0.3925 %				
Modification factor, M	=	1.4				
Allowable deflection, $\delta_{all.}$	=	$k_f * k_c * k_i * M$				
kf	=	1				
kc	=	1				
kt	=	$L_{\text{eff.}}/d = 31$				
$\delta_{ m all.}$	=	43.4 mm				
But actual deflection, δ_{act}	=	$L_x/D = 24 \text{ r}$	nm			

Hene safe against deflection

P. Awithing

P.SENTHILKUMAR, M.E., (Struct), AIV., Charlered Engineer, Approved Valuer and Structural Consultant 30-A, 1st Floor, Kalidas Roc

Man - 641 (


```
353.725 N/mm<sup>2</sup>
                                                                             97.4020002 mm2
                                                                                                            0.00276
                                                                                                                          351.8
                      Assume
                                                                        16 mm dia bars.
                                                                                                            0.00298
                                                                                                                        353.725
                                                                                  200.96 mm<sup>2</sup>
                                                                                                             0.0038
                                                                                                                          360.9
                      Number of bars, n
                                                                             0.48468352 =
                                                                                                      1 Nos.
                      Spacing
                                                                                     230 =
                                                                                                    230 mm
                                                Therefore adopt
                                                                         2 nos. of
                                                                                                16 mm dia bars @
                                                                                     230 mm c/c. in compression zone.
                                                                                  401.92 mm2
                      A<sub>sc provided</sub>
CHECK FOR SHEAR:
                      From I.S. 456:2000, pg.no. 96, Annex-B-5.1)
                      Nominal shear stress, t,
                                                                           v_/bd
                      where shear force ,v,,
                                                                                    94.5 kN
                                                                                  94500 N
                                                                            0.98529872 N/mm<sup>2</sup>
                                                                            1.67623814
                      % of tensile reinforcement, p,
                       FROM IS 456:2000 pg.no.:73 table 19:
                                                                                   0.62
                                                                 1
                                                                            0.75524763
                                                       1.67623814
                                                                                   0.67
                                                             1.25
                                                                            0.75524763 N/mm<sup>2</sup>
                                            Design shear stress, t<sub>e</sub> =
                                                                   Hence not safe
                       Hence provide shear reinforcement
                                                                          v,-t,bd
                                                                               22064.2 N
                                                                               22.0642 kN
                                                                                                8 mm dia bars
                                                                                 legged
                       Use
                                                                                100.48 mm<sup>2</sup>
                       \mathsf{A}_{\mathsf{sv}}
                                                                          (0.87 °f, *Asv *d)/v ...
                       S
                                                                           826.069814 mm
                                                                                   820 mm
                                                                          0.75d
                                                                                312.75 mm
                                                                                                8 mm dia bars
                                                                                legged
                       Adopt
                                                                                   820 mm c/c near the support &
                                                                  @
                                                                                   350 mm c/c at mid-span.
 CHECK FOR DEFLECTION:
                                                                           10.7913669
                      (1/d)<sub>act</sub>
                                                                         (1/d)basic * kt * kc * kt
                      (1/d)max
                                                                           1.67623814
                      pt
                                                                           0.41905953
                      Refering the diagram,
                                                                                  0.93
                                                                                    1.1
                                                                                 20.46
                      Therefore, (I/d)max
                                                                 Hence safe against deflection
```

P. Linthing

P.SENTHILKUMAR, M.E., (Struct), AIV., Chartered Engineer, Approved Valuer and Structural Consultant 30-A, 1st Floor, Kalidas Road, Ramnager, Coimbatore - 641 009,

P. SENTHIL KUMAR M.E., (Struct), AIV Chartered Engineer | Structural Consultant Registered Valuer

STABILITY CERTIFICATE

- 1. The detailed engineering and structure design of the proposed building comprising of Stilt +3 floors at TS.No: 1594 &1595, SITE No: 111 & 112, WARD NO.: H, BLOCK No:40, RANGASAMY ROAD, ANUPARPALAYAM VILLAGE, RS PURAM, COIMBATORE DISTRICT, has been done by me/us based on the report of geotechnical investigation (soil test) done by GEODESIGN INDIA PRIVATE LIMITED and considering the functional requirement of the Building.
- 2. It is certified that among other factors, the proposed building has been designed to resist earthquake. I/We have checked various parameters and found that the proposed building would be safe.
- 3. I/We further certify that:
- (i) The minimum grade of concrete is M20
- (ii) The design and analysis has been done using the code of practice for plain and reinforced concrete as per IS 456, design loads as per IS Codes No IS 456-2000 & IS 875-1987.
- 4. The building will be SAFE AND SOUND when used for the purpose for which it is Designed.

Thanks &with regards

P. Senthil Kumar Structural Consultant

P. Suttiny

P. SENTHIL KUMAR M.E. (STRUCT).AIV Reg No: Coimbato e LPA/SE/GR-I/19/03-083 050/24 30-A, 1st Floor, Kalldus Street, Ram Hagar, Colmbetere - 641 009. Cell: 97853 00478

PROJECT	DAC Developer- BROOKLEYN APARTMENT, COIL	MBATOR	RE	
CONSULTANT	THE DESIGN ONE			
CONSOCIANT	THE DESIGN ONE			
DESIGN OF COLUMN	C2			
DESIGN DATA:				
DESIGN DATA.	Axial Lo	ad, P =	700) kN
	Breadth of the colum			0 mm
		=	0.2	2 m
	Depth of the colum	n, D =	450	mm (
		=	0.45	m
	Unsupported length of the column in x-x axi	$s, L_x =$	3	m .
	Unsupported length of the column in y-y axi	$s, L_y =$	3	m
	Bending Moment about x-x axis	$M_x =$	14.85	kNm
	Bending Moment about y-y axis	$M_v =$	20.83	kNm
	Effective length fa		0.85	
	Grade of concrete			N/mm ²
		-		N/mm ²
EFFECTIVE LENGT	Grade of stee	el, l _y -	300	rount
	Effective length of the column in x-x axis, L _{ex}	_	2.55	***
	Effective length of the column in X-X axis, L _{ex}	_	2550	
	Effective length of the column in y-y axis, Lev	_	2.55	
	below tength of the column in y-y axis, Ley	_	2550	
HECK FOR SLENI	DERNESS RATIO:	_	2330	шш
	L _{ex} /D	=	5.6666667	
			<12	
	Hence, short colum	n	12	
	L _{ev} /b	=	12.75	
	-		>12	
	Hence, long column	1 .		
HECK FOR MINIM	IUM ECCENTRIES:			
	e _{ex, min.}	=	$(L_{ex}/500)+(1$	D/30)
		=	20.1	
		OR		mm
	e _{ey, min.}	=	(L _{ey} /500)+(l	
		=	11.766667	
		OR		mm
	Factored Bending moment in x-x axis, Mux	=	22.275	
	Factored Bending moment in y-y axis, Muy	=	31.245	
	Factored Load, Pu	=	1050	
		=	1050000	
	M_{ux}/P_{u}	=	21.214286	
			. 20	
	M_{uv}/P_u	=	29.757143	mm .
			. 20	
		noment	-20	mm

	Whichever is lesser	. =	300 mm	
	16*Dia of the longitudinal bar	_	320 mm	
	Least lateral dimension of the column	=	200 mm	
	Spacing:			
- 1	Contract	=	8 mm	
	Therefore Dia of lateral ties	=	5 mm	
	Whichever is less	ser		
	Dia of Longitudina		5 mm	
	Dia of Later		5 mm	(OR)
	Diameter of Lateral Ties:			
ATERAL REINFO				
	But Provided , 4 Nos-20mm and 4 Nos-16mm	dia		
	bars uniformly distributed on four sides			
	Hence, provide	6	#	20 mm dia
	Hence O.K.			
	0.8% <p<4%< td=""><td></td><td></td><td></td></p<4%<>			
	Actual p	=	2.0933333 %	
	A _{s provided}	=	1884 mm ²	
		=	6 Nos.	
	No. of bars, N	=	4.2993631	
	Assume	20	0 mm dia bars	
	A_s	=	1350 mm ²	
	Hence O.K.			
	0.8% <p<4%< td=""><td></td><td></td><td></td></p<4%<>			
	p	=	1.5 %	
	p/f_{ck}	-	0.06	
	From Interaction chart of SP 16		0.04	
	From Internation about CODIC	=.	0.2	
	Therefore, d'/D	-	0.23	
	Effective cover, d'	=	0.25	
	Effective cover J	_	50 mm	
	- Wickory	. =	0.4000007	
	$P_u/f_{ck}bD$		0.4666667	
		=	0.07	-
	Turickop	=	0.0694333	
	M _u /f _{ck} bD ²		0.0604222	
	Governing Axis for Bending is y-y axis		31243000 IVII	
	Hence, Factored Bending Moment, Mu	===	31.245 kN 31245000 Nn	

P. Justiny

P.SENTHILKUMAR, M.E., (Struct), AIV., Chartered Engineer, Approved Valuer and Structural Consultant 30-A, 1st Floor, Kalidas Road, Ramnager, Coimbatore - 641 009.

